Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1123155, 2023.
Article in English | MEDLINE | ID: covidwho-20238534

ABSTRACT

Introduction: Natural killer (NK) cells plays a pivotal role in the control of viral infections, and their function depend on the balance between their activating and inhibitory receptors. The immune dysregulation observed in COVID-19 patients was previously associated with downregulation of NK cell numbers and function, yet the mechanism of inhibition of NK cell functions and the interplay between infected cells and NK cells remain largely unknown. Methods: In this study we show that SARS-CoV-2 infection of airway epithelial cells can directly influence NK cell phenotype and functions in the infection microenvironment. NK cells were co-cultured with SARS-CoV-2 infected epithelial cells, in a direct contact with A549ACE2/TMPRSS2 cell line or in a microenvironment of the infection in a 3D ex vivo human airway epithelium (HAE) model and NK cell surface expression of a set of most important receptors (CD16, NKG2D, NKp46, DNAM-1, NKG2C, CD161, NKG2A, TIM-3, TIGIT, and PD-1) was analyzed. Results: We observed a selective, in both utilized experimental models, significant downregulation the proportion of CD161 (NKR-P1A or KLRB1) expressing NK cells, and its expression level, which was followed by a significant impairment of NK cells cytotoxicity level against K562 cells. What is more, we confirmed that SARS-CoV-2 infection upregulates the expression of the ligand for CD161 receptor, lectin-like transcript 1 (LLT1, CLEC2D or OCIL), on infected epithelial cells. LLT1 protein can be also detected not only in supernatants of SARS-CoV-2 infected A549ACE2/TMPRSS2 cells and HAE basolateral medium, but also in serum of COVID-19 patients. Finally, we proved that soluble LLT1 protein treatment of NK cells significantly reduces i) the proportion of CD161+ NK cells, ii) the ability of NK cells to control SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells and iii) the production of granzyme B by NK cells and their cytotoxicity capacity, yet not degranulation level. Conclusion: We propose a novel mechanism of SARS-CoV-2 inhibition of NK cell functions via activation of the LLT1-CD161 axis.


Subject(s)
COVID-19 , Receptors, Cell Surface , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Killer Cells, Natural , Receptors, Cell Surface/metabolism , SARS-CoV-2/metabolism
2.
Carbohydr Polym ; 312: 120756, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2309426

ABSTRACT

In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.


Subject(s)
Chitosan , Viruses , Animals , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Glutaral/chemistry , NIH 3T3 Cells
3.
Clin Microbiol Infect ; 28(3): 451.e1-451.e4, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1623323

ABSTRACT

OBJECTIVES: This work aimed to analyse possible zoonotic spill-over of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the spill-over of mink-adapted SARS-CoV-2 from farmed mink to humans after adaptation that lasted at least 3 months. METHODS: Next-generation sequencing and a bioinformatic approach were applied to analyse the data. RESULTS: In an isolate obtained from an asymptomatic patient testing positive for SARS-CoV-2, we found four distinguishing mutations in the S gene that gave rise to the mink-adapted variant (G75V, M177T, Y453F, and C1247F) and others. CONCLUSIONS: Zoonotic spill-over of SARS-CoV-2 can occur from mink to human.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/veterinary , Farms , Humans , Mink , SARS-CoV-2/genetics , Zoonoses
4.
Euro Surveill ; 26(39)2021 09.
Article in English | MEDLINE | ID: covidwho-1448681

ABSTRACT

Routine genomic surveillance on samples from COVID-19 patients collected in Poland during summer 2021 revealed the emergence of a SARS-CoV-2 Delta variant with a large 872 nt deletion. This change, confirmed by Sanger and deep sequencing, causes complete loss of ORF7a, ORF7b, and ORF8 genes. The index case carrying the deletion is unknown. The standard pipeline for sequencing may mask this deletion with a long stretch of N's. Effects of this deletion on phenotype or immune evasion needs further study.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Poland
5.
Antioxidants (Basel) ; 10(9)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1408381

ABSTRACT

COVID-19 caused by SARS-CoV-2 caused a worldwide crisis, highlighting the importance of preventive measures in infectious diseases control. SARS-CoV-2 can remain infectious on surfaces for up to several weeks; therefore, proper disinfection is required to mitigate the risk of indirect virus spreading. Gaseous ozone treatment has received particular attention as an easily accessible disinfection tool. In this study, we evaluated the virucidal effectiveness of gaseous ozone treatment (>7.3 ppm, 2 h) on murine hepatitis virus (MHV)-contaminated stainless-steel surface and PBS-suspended virus under field conditions at ambient (21.8%) and high (49.8-54.2%) relative humidity. Surficial virus was soiled with 0.3 g/L of BSA. Parallelly, a half-hour vaporization with 7.3% hydrogen peroxide was performed on contaminated carriers. The obtained results showed that gaseous ozone, whilst quite effective against suspended virus, was insufficient in sanitizing coronavirus contaminated surfaces, especially under low RH. Increased humidity created more favorable conditions for MHV inactivation, resulting in 2.1 log titre reduction. Vaporization with 7.3% hydrogen peroxide presented much better virucidal performance than ozonation in a similar experimental setup, indicating that its application may be more advantageous regarding gaseous disinfection of surfaces contaminated with other coronaviruses, including SARS-CoV-2.

6.
Pathogens ; 9(11)2020 Oct 24.
Article in English | MEDLINE | ID: covidwho-1224088

ABSTRACT

African swine fever (ASF) causes huge economic losses and is one of most dangerous diseases of pigs. The disease is known for almost 100 years, an effective vaccine or treatment is still unavailable, only proper biosecurity measures, including disinfection, are being applied, in order to prevent disease outbreaks. Eight active substances, i.e., formaldehyde, sodium hypochlorite, caustic soda, glutaraldehyde, phenol, benzalkonium chloride, potassium peroxymonosulfate and acetic acid, were tested, in order to confirm their effectiveness against African swine fever virus (ASFV). This specific selection was done based on the World Organisation for Animal Health (OIE)'s recommendation and previous disinfectant studies on surfaces. The result of our study shows that most of them inactivate the virus, in recommended concentrations. In order to reduce the cytotoxicity of the four substances, Microspin S-400 HR columns were applied, therefore making it possible to demonstrate four logarithms virus titer reduction. Sodium hypochlorite, glutaraldehyde, caustic soda and potassium peroxymonosulfate showed the best ASFV inactivation rates, achieving titer reductions over 5 logs. Despite microfiltration, the virucidal activity of formaldehyde was not assessable, due to its high cytotoxicity. Our results showed that cleaning is particularly important, because removal of the soiling provides improved effectiveness of the tested chemical compounds.

SELECTION OF CITATIONS
SEARCH DETAIL